EUCAIM

Project title: European Federation for Cancer Images
Project acronym: EUCAIM

Grant Agreement: 101100633

Call identifier: DIGITAL-2022-CLOUD-AI-02

D4.9 Central Core Infrastructure set-up

Author(s):

Ignacio Blanquer (UPV), Pablo Montoliu (UPV), Marcel Koek
(Erasmus MC), Esther Bron (Erasmus MC, Health-RI), Pau Lozano
(UPV), Andrei S. Alic (UPV)

Reviewers (WP)

Carina Soler (HULAFE),
Martin (QUIBIM)

Ignacio-Gomez Rico (HULAFE), Celia

WP2

WP3

WP4 | Carina Soler (HULAFE), Ignacio Gomez-Rico (HULAFE)
WP5

Date of delivery: 30/06/2024
Version: V0.1

Due date: Month 18
Actual delivery

date:

Type: DEM + R
Dissemination Public
level:

1. Introduction

2. Backend infrastructure

2.1. Principles of

2.2. Hardware fabric

2.3. Cloud Backe

2.4. Kubernetes Backend
3. Kubernetes components

the INTrastrUCIUIE.
o F TR

3.1. Design Principles
3.2. Storage Backend
3.3. High Availability

3.4. Components

3.4.1. Dashboard
3.4.2. Public Catalogue
3.4.3. Federated Search
3.4.4. Negotiator
3.4.5. Monitoring
3.5. External services

3.5.1. LS-AAl

3.5.2. Helpdesk

4. Reference Nodes

4.1. UPV Reference Node
4.2.1 Data ingestion

4.2. Euro-Biolmaging Reference NOde..............oooooiiiiiiiiii e 22

4.2.1. High level ArchiteCture............uuuiiii i e e e 22
4.2.2. Technical implementation..............oooii 23
4.2.3. Data iNgeSHON. ... 24

Terms Definitions

AAl Authentication and Authorisation Infrastructure

AARC Authentication and Authorisation for Research and Collaboration

Al4HI Al4HI Al for Health Imaging Network

API Application Programming Interface

Auth Authentication

BBMRI-ERIC European Infrastructure for Biobanking - European Research Infrastructure Consortium

A free and open-source software-defined storage platform that provides object storage,

CEPH block storage, and file storage

DBMS Database Management Service

DCAT-AP Data Catalogue vocabulary Application Profile

DCM4CHEE A Java-based library and set of tools for working with DICOM files

DICOM Digital Imaging and Communication In Medicine

DNS Domain Name System

EduGain Global interfederation service that interconnects multiple identity federations

EGI European Grid Infrastructure

ELK Elasticsearch, Logstash, Kibana

EOSC European Open Science Cloud

EU European Union

EUCAIM European Federation for Cancer Images

FAIR Findable, Accessible, Interoperable, Reusable

FDP FAIR Data Point

GbE Gigabit Ethernet

GDPR General Data Protection Regulation

GPU Graphics Processing Unit

Guacamole A clientless remote desktop gateway

GUI Graphical User Interface

IdP Identity Provider

IM Infrastructure Manager

K8S Kubernetes

KubeApps In-cluster web-based application for the management of Kubernetes applications

KubeAuthoriser A federated cloud architecture for processing of cancer images on a distributed storage

Kyverno A policy engine designed specifically for Kubernetes
LS-AAI Life Sciences Authentication and Authorisation Infrastructure
LTS Long Term Support

A modular web application for scientific data, initially focused on molecular genetics
MOLGENIS research (molecular genetics information system) but expanded to other disciplines.

Negotiator BBMRI-ERIC service for structured negotiator for biomedical resources
NFS Network Filesystem

OAuth2 Open Authorisation v. 2.0

OpenID Open standard and decentralised authentication protocol

PACS PACS Picture Archiving and Communication System

Postgres Object-oriented relational Database management system

PV Persistent Volume object

PVC Persistent Volume Claim

QUIBIM Spanish company on Al applied to Image Biomarkers

RIS RIS Radiological Information System

TB Terabyte

TOSCA Topology and Orchestration Specification for Cloud Applications

UPsS Uninterrupted Power Service

UrPv Universitat Politécnica de Valéncia (Valencia University of Technology)
VAULT Hasihcorp identity-based secrets and encryption management system

VM Virtual Machine

VMI Virtual Machine Image

VO Virtual Organisation

WP WP Work Package

The opinions stated in this report reflect the opinions of the authors and not the opinion of the
European Commission.

All intellectual property rights are owned by the consortium of EUCAIM under terms stated in their
Consortium Agreement and are protected by the applicable laws. Reproduction is not authorised
without prior written agreement. The commercial use of any information contained in this document
may require a licence from the owner of the information.

EUCAIM leverages from the developments on other Research Infrastructures for health
data, extending and customising services that are key for metadata cataloguing, federated
search, access negotiation, data storage and computing-intensive processing.

Those services have been adapted and customised to deal with the specificities of EUCAIM
and to enable their integration. These components have been prepared for being deployed
on a Kubernetes infrastructure that manages the availability, network traffic and workloads
efficiently. The document describes the backend infrastructure and the deployment manifests
for each one of the core services of EUCAIM.

EUCAIM constitutes a federated infrastructure. The Reference (sometimes called central)
storages are reference implementations of storage and processing nodes that can be
replicated around the federation. The basic federation of EUCAIM described here involves
two reference storages and two Al4HI providers.

EUCAIM also deploys two core service infrastructures, one for production and one for
development, using the same components and under two different DNS. Both infrastructures
have the same AAI registrations and use configuration files and environment variables for
customising each deployment.

The backend infrastructure comprises the hardware resources and the middleware layers
used to run the services of EUCAIM. It has been divided into three blocks: Hardware
resources, cloud management layer and container management layer.

2.1. Principles of the infrastructure

The architecture should support the following design principles:

- High availability. The hardware should be provided by an Uninterrupted Power
Service (UPS), replicated storage and a reliable control plane.

- Efficiency. The hardware resources and the middleware software layers should
provide enough resources and should enable high performance processing through
GPU accelerators.

- Security. Exposure of services must be minimised, access to resources should be
limited, users should be properly authenticated and authorised and all
communications in external networks should be encrypted.

- Convenience. The infrastructure should rely on widely used components and
protocols, reducing the migration burden from the providers.

2.2. Hardware fabric

The core services run on hardware resources shared with the reference storage and
processing environment located at UPV, although the core services environment is isolated
from the reference storage at the software level. The infrastructure at UPV, at the release of
this deliverable, comprises 5 nodes Gigabyte R283-ZF0-AAL1 with 2 CPUs AMD EPYC
9474F 48-Core Processor each, summing up 480 cores, 3,84TB RAM and 15 A30 GPU
accelerators with 24 GB of RAM each, as well as an additional storage server with 16 TB of
NVMe link SSD disks connected through 25+25GbE to the nodes.

In the coming months, it is expected to expand the storage to 250 TB using similar
technology and reach by Q1 2025 a total of 12 servers (1152 cores), 9TB of RAM and 36
GPU accelerators.

2.3. Cloud Backend

The hardware resources are offered in the format of a cloud on-premise offering,
implemented through OpenStack Bobcat. OpenStack is the de facto standard in on-premise
cloud management frameworks, and provides maintenance and frequent updates. The
deployment exposes four public endpoints:

- Dashboard (Horizon): https://imaging.i3m.upv.es/horizon/

- Authentication (Keystone): https://imaging.i3m.upv.es:5000/v3/

- Virtual Machine Image Catalogue (glance): https://imaging.i3m.upv.es:19292

- Network manager (neutron); https://imaging.i3m.upv.es:19696

All public endpoints require authentication and are limited to the administration managers of
the EUCAIM core services infrastructures. Access to the endpoints is restricted to the
internal network of the UPV.

A specific project has been created within the platform to isolate the permissions of the users
that manage the EUCAIM cores services from the users who manage the platform. The
types of instances for the core system are:
- Instance types:
- Large VM (12 cores, 62,5GB RAM)
- Small (4 cores, 23,4GB RAM)

- VMis:
- Ubuntu 24.04 LTS (noble)
- Ubuntu 22.04 LTS (jammy)

On top of those virtual resources, a Kubernetes infrastructure is deployed, which will be the
place where the core services are deployed.

2.4. Kubernetes Backend

All the core services are embedded into software containers that are run on the platform
through a Kubernetes container management platform.

Kubernetes is installed using Infrastructure Manager (https://www.grycap.upv.es/im) through
the EGI IM Dashboard (https://im.egi.eu/im-dashboard/), a cloud orchestration solution which
is widely wused in e-Infrastructures, such as the EGI Federated cloud
(https://www.egi.eu/eqgi-infrastructure/) and the Application Workflow Manager of the EOSC
Core managed services of the EOSC EU Node.

The set up includes:
- One Small VM for the Kubernetes front-end.

- Three Large VMs for the worker nodes of Kubernetes.

https://imaging.i3m.upv.es/horizon/
https://imaging.i3m.upv.es:5000/v3/
https://imaging.i3m.upv.es:19292/
https://imaging.i3m.upv.es:19696/
https://www.grycap.upv.es/im/index.php
https://im.egi.eu/im-dashboard/
https://www.egi.eu/egi-infrastructure/

Infrastructure manager facilitates the scalability of the platform by providing a convenient
interface to expand or reduce the number of nodes. Reducing the nodes triggers the
reallocation of the containers automatically. Expanding the nodes will open additional space
for additional (or pending) workloads.

Along with the Kubernetes system, the following components are installed:
- A Flannel network plugin.
- The Kubernetes Dashboard.
- A Helm service to deploy Helm charts of applications.
- Let’s encrypt certificate manager.
- An NFS Persistent Volume provisioner.

The specification of the Kubernetes installation recipes follow the TOSCA standard
(Topology and Orchestration Specification for Cloud Applications). The template of the recipe
is available in https://github.com/grycap/tosca/blob/main/templates/kubernetes.yaml.

3.1. Design Principles
The core services deployment manifests have been implemented considering the following
implementation principles:

- Every component is deployed on a different namespace.

- Reduced surface exposure by exposing only the essential endpoints.

- Endpoints accessible through https protocols on standard ports only.

- Services are instantiated through high-availability deployments.

- Storage is provided through an NFS Persistent Volume.

All the Kubernetes manifests are available in a GitHub Repository of the project
(https://github.com/EUCAIM/k8s-deployments/)

3.2. Storage Backend

Containers are ephemeral and the local storage is volatile. Any file stored in the containers
will disappear if the container is restarted. A persistent storage is attached via NFS
persistent volumes to each one of the components. In some cases, components require
more than one volume and they are provided as separate volumes.

The matching between the Persistent Volume Claim (PVC) and the Persistent Volume (PV)
is performed through the definition of a specific StorageClass for each type of volume,
easing traceability. Figure 1 shows a schema of the general deployment of each PV in the
cluster. The manifests for each one of the PV types are included in the manifests of each
component.

https://github.com/grycap/tosca/blob/main/templates/kubernetes.yaml
https://github.com/EUCAIM/k8s-deployments/

Persistent PV Persistent
Volume boundingyjglume Claim

NFS Service —_—

Volume mount point

! Pod
NFS Volume i
| Kubernetes cluster

Figure 1. Structure of Storage in the Kubernetes deployments.

3.3. High Availability

High availability is implemented through three approaches:

- Use of scalable deployments with potentially multiple instances. This is implemented
in the services with higher exposure which could suffer a higher workload.

- Use of automatic restart policies for the pods, ensuring that services are restarted in
case of unexpected errors, by using the “Always” Restart Policy of the replica sets.

- Use of blue-green deployments (see figure 2) to roll-out new versions with the
capability of immediately rolling back to previous deployments.

The blue-green deployments are implemented in the following cases:

- Dashboard, with separate persistent volumes for the web application to deal with
updates in the application and the container images.

- Federated Search Explorer, to deal with updates at the container level.
- Negotiator, to deal with updates at the container level.

The catalogue uses a conventional deployment as the changes are made at the database
level and rarely at the container level. In any case, a development deployment has been set
up to facilitate testing new versions prior to launching them in the production environment.

Blue

deployment Elees
. Ingress .
User Controller —_— Service PVC/ PV
Green

deployment
Scaled to 0

Figure 2. Blue-green deployments. Two identical deployments with an ingress controller
pointing out to the active one. The inactive deployment is scaled to 0 and is the one where
changes are applied when rolling out a new application, changing the ingress controller to

the green service. When the application is completely verified, the blue deployment is scaled
to 0 and becomes the future testing environment.

3.4. Components

This section briefly describes each one of the deployment artefacts for each one of the
components that define the core services of EUCAIM.

The namespaces in each component deployed are self-explanatory (dashboard, catalogue,
explorer, negotiator, monitoring).

It is important to outline that services are accessible only in the private overlay network of
the Cilium plugin in Kubernetes. Only the services that require external access are exposed
through an nginx proxy and using encrypted protocols.

Detailed descriptions of the components can be found in Deliverable D4.5 First Federated
Core Services. Instructions for its usage can be found in Deliverable D4.13 End-user guide
to the system.

3.4.1. Dashboard

The Dashboard is the main entry point to the EUCAIM environment. It is described in detail
in Deliverable D4.7 First EUCAIM Dashboard. The manifests that describe the deployment
are available in GitHub'. The schema of the components is shown in Figure 3. The
Dashboard implies four main components:

- Two PV with the application and the database files.

- A MongoDB database running in a deployment, persisting the database files through
a PVC and internally accessible through a service, which is used by the Dashboard
application.

- A nodedS server running in a deployment, mounting the dashboard application
through a PVC and exposed through the dashb-node-service.

- An ingress controller that exposes the dashboard service in the root of the
dashboard.* DNS.

' https://github.com/EUCAIM/k8s-deployments/tree/main/dashboard

https://github.com/EUCAIM/k8s-deployments/tree/main/dashboard

https://dashboard.eucaim.cancerimage.eu
https://dashboard-eucaim.grycap.i3m.upv.es

root-path-red dashb-node-se

irect rvice
letsencrypt
-prod

mongo-service

27017
27017

eucaim-dash eucaim-dashbo dashb-mongo- dashb-mongo-
board ard-XXX XXX deployment

/data var/run/secrets/kubernetes.io/serviceaccount

StorageClass: StorageClass:
nfs-node nfs-dashb-mongo

dashb-mongo- dashb-m

node-vol node-vol-pvc kube-root-ca.crt -

ongo-vol

/mnt/nfs_share2/mockup/node /mnt/nfs_share2/mockup/dashboard/mongo

. Deployment . PVC . ConfigMap . Ingress
Pod PV . Service

Figure 3: Schema of Kubernetes manifests for the deployment of the Dashboard.

The previous components have been listed following the recommended deployment order.
To customise the deployment, the following changes should be applied:

- Change the hostname in the root-path-redirect ingress.
- Change the PV NFS endpoints in the node-vol and dashb-mongo-vol PVs

- The configuration of the endpoints should be provided in a file named settings.json
and the configuration of the AAI should be changed in the code (client/main.jsx,
structure LSConfig). The package should be compiled and uploaded into the
Dockerfile of the container images

The provisioning of a certificate for the domain where the service will be exposed is
automatically created through an annotation in the ingress controller. This annotation triggers
the creation and fetching of a certificate for the domain through Let’s encrypt service, which
is stored in a secret Kubernetes object.

3.4.2. Public Catalogue

The public catalogue stores the metadata, offering the researchers descriptive information
about the available datasets. The catalogue consists of the Molgenis 10.1 platform as a
back-end with a custom Javascript front-end which is based on prior catalogues. The whole
architecture of the Molgenis platform has been minimised to the components relevant for
EUCAIM.

10

The manifests that are used for the deployment of the catalogue may be also found in
GitHub?. The architecture of the solution is shown in Figure 4 and Figure 5. The deployment
consists of four elements:

1. Molgenis deployment: This deployment is configured through two ConfigMaps that
define the service parameters and two Persistent Volumes (PV) where the logs from
the application (audit PV) and the backups and the necessary files for running the
application backend (app-data PV) are stored.

2. Frontend deployment: The frontend deployment runs the molgenis-frontend image.
This frontend is accessible via web at the url
https://catalogue.eucaim.cancerimage.eu/ thanks to the Ingress attached to it. It also
has a persistent volume mounted through a Persistent Volume Claim (PVC) mounted
to the PV where the necessary files for running the Molgenis user interface are
stored.

3. Postgres database: A database, where the catalogue metadata is stored. The
Postgres database information is stored in the postgres-vol2 PV.

4. Elasticsearch: Molgenis uses Elasticsearch for indexing the data layer. This
deployment also comes with its own persistent volume, allowing elasticsearch to
keep the data.

ConfigMaps

As can be seen in Figure 5, the architecture of the federated search contains 5 distinct
ConfigMaps. Each of these ConfigMaps has been designed with the following purposes:

ConfigMap backend: Configures an Nginx server to act as a reverse proxy and
manage DNS resolutions within the cluster.

ConfigMap nginxconf: Contains the main settings for an Nginx server, including
worker processes and logging configurations.

ConfigMap tomcat-webxml: Sets up web application parameters for Tomcat,
focusing on file upload configurations and application metadata.

ConfigMap tomcat-serverxml: Provides detailed server settings for Tomcat,
focusing on HTTP connector configurations and user authentication.

ConfigMap Itsconf: Manages URL rewrites and redirects in Nginx to optimize
content delivery and application functionality.

2 https://github.com/EUCAIM/k8s-deployments/tree/main/Molgenis

11

https://catalogue.eucaim.cancerimage.eu/
https://github.com/EUCAIM/k8s-deployments/tree/main/Molgenis

/mnt/nfs_share2/molgenis/postgres

. Deployment

postgres postgres DOStgresédat posiere . PVC
v s-vol2
PV
StorageClass: nfs-postgres . Service

/mnt/nfs_share2/molgenis/elasticsearch

es-data-pvc
2

elasticsearch elasticsearch

es-vol2
StorageClass: nfs-es

Figure 4. Deployment schema of the postgres and elasticsearch deployments in the

catalogue.
H cancerimage-in

https:ficatalogue.eucaim.cancerimage.eu

https:/icatalogue-eucaim.ramses.i3m.upv.es Deployment
molgenis frontend
= gress Pod
22896 / 3001
frontend-port ! frontend 80/8000 . PVC
tomcat-serverx
&0
ml PV
molgenis nginxconf frontend . ConfigMap
tomcat-websml ltsconf
. Service
audit-log-p - Ingress
. Issuer

audit'l.o Jeteinginx/proxy.dibackend.conf
o g2 g i et
a2 -vol2 o

/home/molgenisidata /home/molgenis/audit
StorageClass: StorageClass: nfs-molgenis-audit

> StorageClass: nfs-frontend
nfs-molgenis-data

Figure 5. Deployment schema of the Molgenis backend and frontend deployments.

Each deployment uses a service to make the services accessible and discoverable. Only the
frontend service is made available to outside of the platform through an ingress controller.
The catalogue application is available in the private repository
https://gitlab.com/radiology/infrastructure/projects/catalogue/eucaim-molgenis-app

3.4.3. Federated Search

The federated search is responsible for obtaining and displaying the datasets and the
number of subjects that fulfil a specific filtering criteria defined by the user. The software is
available at https://github.com/samply/beam.

The architecture of the federated search is composed of six different elements that allows it
to manage the connections between the different data holders.

12

https://gitlab.com/radiology/infrastructure/projects/catalogue/eucaim-molgenis-app
https://github.com/samply/beam

1. Lens: Lens is responsible for providing the graphical interface to the user, allowing
them to interact with the explorer in an efficient way. This deployment is linked to an
ingress that makes it accessible at the urls: https://explorer.eucaim.cancerimage.eu/
and https://explorer-eucaim.grycap.i3m.upv.es/

2. Spot: Spot is the backend service of the federated search application and is
responsible for making the calls to the proxy for retrieving the data that the user
specified.

3. Beam-Proxy: The Beam-Proxy is responsible for connecting the application service
to the broker, thereby allowing the application to access data from other projects.

4. Broker: The Broker is in charge of linking all the projects together by managing the
requests from the proxies (each project has its own proxy).

5. Vault: A Vault meant to store and protect the access to tokens, passwords and
certificates. Vault services can be accessed through the Vault APl and we can also
use the vault for auditing due to it keeps a log of the access to secrets, allowing
security administrators to track who accessed which secrets and when.

6. Oauth 2.0 Proxy: This Oauth2 proxy acts as a reverse proxy and authentication
layer. It allows us to access the application via LifeScience AAI authentication without
having to implement a login application.

Figure 6 shows the deployment at the central service and Figure 7 shows the deployment at
the data holders, as well as the interaction among the components. As can be seen in
Figure 7, each data holder must have a beam proxy service deployed for connecting to the
beambroker of the central node, and a Focus service that acts as an intermediary with the
particular data service that each data holder has. To facilitate the understandability of both
figures, the pod objects associated with the deployments are not included.

httpe:/fexplorer.eucaim.cancerimage e/
https:iexplorer-eucaim.grycap.i3m.upv.es/

Deployment
explorer-ingres explorer-ingres . oauth2-proxy-i
p g P g broker-ingress proxy
s s ngress Pod
P .
80 /backend PVC
;o . beam-proxy-d . oauth2-praxy- PV
lens-service - e roker-service :
spot-service e broker-servici i
ConfigMap
lens-deployme spot-deployme beam-proxy-se broker-deploy oauth2-proxy- Service

nt deployment

nt rvice ment
Ingress

StorageClass: nfs-vault-audit lssuer

federated-searc

h-vault-audit-pv audit-vault-0
2
vault-0
federated-searc
h_vault_data_pv data-vault-0
2

StorageClass: nfs-vault-data

Figure 6. Deployment schema of the federated search at the core services level.

13

https://explorer.eucaim.cancerimage.eu/
https://explorer-eucaim.grycap.i3m.upv.es/

The manifests and some more information about the deployment of this service may be
found at: https://github.com/EUCAIM/k8s-deployments/tree/main/federated-search/eucaim.

Issuer

Data holder X Data holder Y . Deployment
- Pod
dataset Lo bheam-pro dataset
. Ooxy-sery| -
service - wy-service service
|-
beam-pr bearmn-pro
oxy-depl xy-deploy Pv
oyment ment
. CanfigMap
/
explorer .
[-ingress . Service
[) explor ::;J:J;?“; lens-ser :Ea’:';z’l broker-s . Ingress
i ey il
- ingress gress =] oyrment ervice

broker-d

Eff.,?ﬁf‘ G Central node

nt

cauth- lens-depl
B oyment
ervice

oauth2-p
ray-depl federated-
search-va
ult-audit-p
w2
federated-
search-va
ult-data-p
s

oyment

Figure 7. Deployment schema of the federated search including the interactions with the
data holders.

As in the previous core services, a Kubernetes service is created to provide a persistent
endpoint for lens, spot, beam-proxy, broker-service and vault. The application does not need
persistent storage except for the case of the access credentials, which are stored in Vault.

The authentication and authorisation is provided by the OAuth2 proxy ingress service and an
OAuth2 configuration in a secret, both available in the GitHub Repository®. For the
deployment, the following attributes should be updated:

- OAuth2 ingress: the attribute host should include the DNS of the host for
discriminating Federated Search requests (explorer.eucaim.cancerimage.eu in the
case of EUCAIM production service.

- OAuth2 proxy deployment: The following arguments should be checked and updated:

- --redirect-url=https://explorer.eucaim.cancerimage.eu/oauth2/callback
- --oidc-issuer-url=https://proxy.aai.lifescience-ri.eu
- --scope="openid email profile eduperson_entitlement"
- --whitelist-domain=explorer.eucaim.cancerimage.eu
- OAuth2 secret: Client ID and Secret access key from the LS-AAI console.

3.4.4. Negotiator

The negotiator component deployment manifests are available in GitHub*. It comprises three
main services that implement the Ul, the backend and the database. Although the Ul is the

3 https://github.com/EUCAIM/k8s-deployments/tree/main/federated-search/eucaim
4 https://github.com/EUCAIM/k8s-deployments/tree/main/negotiator_v3

14

https://github.com/EUCAIM/k8s-deployments/tree/main/federated-search/eucaim
https://explorer.eucaim.cancerimage.eu/oauth2/callback
https://proxy.aai.lifescience-ri.eu/
https://github.com/EUCAIM/k8s-deployments/tree/main/negotiator_v3
https://github.com/EUCAIM/k8s-deployments/tree/main/federated-search/eucaim

only service that is directly accessible from users, the backend exposes the API to the web
browser application in the /api path. Therefore, the negotiator application has two ingress
services that expose the frontend and backend deployments. A third deployment manages a
postgres database that is accessible only through the internal network. The persistence of
the applications is fully managed through the database, that includes the Ul forms. The
persistence is provided by a PVC mounting a dedicated NFS PV Volume. Figure 8 describes
the names and interactions of the components.

https://negotiator.eucaim.cancerimage.eu https://negotiator.eucaim.cancerimage.eu/api
https://negotiator-eucaim.grycap.i3m.upv.es https:/negotiator-eucaim.grycap.i3m.upv.es/api

negotiator-

negotiator- negotiator- negotiator-v3 negotiator-v3-
frontend- : . .
: frontend ingress -service db-service
ingress
8080 8081 5432
8080 30025 16909

negotiator- negotiator-
frontend frontend-XXX

StorageClass:
. Deployment . PVC nfs-negotiator-db

negotiator-v3-
db-pvc

/bitnami/postgresq|

Pod PV .
° negotiator-db-vol

. Service . Ingress /mnt/nfs_share/negotiator/db

Figure 8: Schema of Kubernetes manifests for the deployment of the Negotiator.

The deployment first creates the PV and the PVC, and then instantiate the database, the
backend and the frontend UI.

The customisation of the deployment of the negotiator implies the following steps:
- Update the IP of the NFS service and the location of the NFS folder.

- Update the LS-AAIl details in the SPRING_* in the backend and the Molgenis
catalogue URL. Especially take into account:

- The Java Web Token issuer, which is indicated in the environment variable:
SPRING_SECURITY_OAUTH2_RESOURCESERVER_JWT_ISSUERURI
should be ended by a backslash (e.g. "https://login.aai.lifescience-ri.eu/oidc/”).

- The resource server audiences for the Java Web token
(SPRING_SECURITY_OAUTH2_RESOURCESERVER_JWT_AUDIENCES)
should contain the client ID of the Ul rather than the URL (e.g.
"a15a95d1-b251-4f12-b608-76ec02c68010").

- Update the LS-AAI configuration in the frontend (AUTH_URL, CLIENT_ID and
REDIRECT_URI)

- Update the hostname attributes in the Ingress objects.

- The SSL certificate is automatically created by Kubernetes if the Let’s encrypt service
is installed along with the provisioner. First time the service is deployed a secret with
the certificate is created.

15

https://login.aai.lifescience-ri.eu/oidc/

3.4.5. Monitoring

The monitoring service provides an overview of the status of the different EUCAIM
components by making requests to the associated web services at certain periods of time. In
addition to this, the service is also capable of sending notifications to the person in charge of
a EUCAIM component when one of the predefined rules is fulfilled.

The service’s architecture is composed of 6 components of the technological stack
Elasticsearch-Logstash-Kibana (ELK stack), which are deployed in a Kubernetes cluster
using the operator pattern®, that is responsible for defining Kubernetes software extensions
that use custom resources to manage applications and their components.

1. Elasticsearch: Search engine that stores the information corresponding to different
metrics in indexes and allows access to the data in a very fast way and with easy
scaling. In this case, an index has been defined with the name monitor-alerts, where
a document is written each time an alert occurs in one of the EUCAIM services.

2. Kibana: Software that allows the generation of different types of dashboards, making
it easier to visualise and interpret data of different types and origins.

3. Heartbeat: Functionality that periodically checks the status of a set of predefined
services and, based on the response received, is able to determine whether they are
available or not.

4. Logstash: It is responsible for collecting the metrics of the Elasticsearch
monitor-alerts index. Then, it filters the data collected and, depending on the service
that sends the message, it sends a notification email to the person in charge of that
service.

5. Elastic Agent and kube-state-metrics: These two components work together to
collect Kubernetes cluster state metrics and store them in an Elasticsearch index for
further analysis.

For the deployment of these services, different YAML manifests have been used, which can
be found in the EUCAIM project’'s GitHub®. Once all the aforementioned components are
deployed, they will start interacting and the alert and monitoring service will be launched,
being accessible at the URL https://elastic-eucaim.grycap.idm.upv.es/. For more information
on the interaction between the different components please refer to Figure 9, which shows
the interaction at a high level of abstraction, or Figure 10, that depicts the interaction
between the components at the Kubernetes object-level.

5 Kubernetes operator pattern: https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
¢ GitHub repository EUCAIM/monitoring-services: https://github.com/EUCAIM/monitoring-services

16

https://elastic-eucaim.grycap.i3m.upv.es/
https://github.com/EUCAIM/monitoring-services
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

Heartbeat

Dashboard

Catalogue

Federated
Search

Negotiator

Helpdesk

.| Email
i Notification

Logstash

Obtains from

Verifies |
>

Sends t
- endsto_,
-

Rule Stores alert in >

Kibana

Elasticsearch

Stores in

- |

kube-state-metrics

Elastic Agent

Figure 9. Interaction diagram between monitoring service components.

monitoring namespace

/

\

elastic-es-default
elastices http
elastic-es-internal-
http
Service
elastic-es-transport
) B
StatefulSet
kube-system namespace

elastic-agent-standalone

kube-state-metrics

Figure 10. Kubernetes object-level interaction diagram.

17

3.5. External services

Along with the services deployed in the central node, EUCAIM uses external services for
managing the Authentication and Authorisation and the Helpdesk ticketing.

3.5.1. LS-AAl

EUCAIM supports authentication based on OpenID. EUCAIM uses the Life Science
Authentication and Authorisation Infrastructure (LS-AAIl) in all the components. This
facilitates the administration of the user’s permission (performed through the membership to
the EUCAIM VO Group. In addition to this, the LS-AAI enables third party applications, such
as the federated nodes that already use the LS-AAl, to seamlessly integrate to the EUCAIM
Federation.

All the application endpoints are registered in the LS-AAI catalogue:
- Dashboard (dashboard.eucaim.cancerimage.eu)

- Federated Search (explorer.eucaim.cancerimage.eu)
- Negotiator Ul (negotiator.eucaim.cancerimage.eu)

- Negotiator backend (negotiator.eucaim.cancerimage.eu/api)

- Helpdesk (helpdesk.eucaim.cancerimage.eu)

- Reference Node at UPV (eucaim-node.i3m.upv.es)

Each service has a client ID and a secret that are used for the authentication at the level of
the service. The services receive the following entitlements from the LS-AAI service.

- urn:geant:lifescience-ri.eu:group:lifescience:communities_and_projects:EUCAIM#aai.
lifescience-ri.eu

The basic configuration of a service in EUCAIM is shown in Figure 11

Alternatively, a Keycloak instance could be deployed to manage the authorisation of all the
services and users.

Sarvice #3885 - Negotiator ELICAIM

u S e | w

a) b)

Figure 11: Service configuration of one of the EUCAIM core services. Service description (a)
and OIDC configuration (b).

18

http://dashboard.eucaim.cancerimage.eu/
http://explorer.eucaim.cancerimage.eu/
http://negotiator.eucaim.cancerimage.eu/
http://negotiator.eucaim.cancerimage.eu/api
http://helpdesk.eucaim.cancerimage.eu/
http://eucaim-node.i3m.upv.es/

3.5.2. Helpdesk

The helpdesk instance is hosted by the Karlsruhe Institute of Technology (KIT) and it has
been configured to accept LS-AAIl accounts. Therefore, it is not deployed along with the rest
of the core services in the central node, and no additional details are provided in this
document. Figure 12 shows the entry page’ of the Helpdesk and the creation of a ticket.

® 2 @ [| ¥ cucAM-EmaitNeedtoupse x |+
C # https:/fhelp.cancerimage.eu/.. B 2 A [7 3 m o @

New Ticket

i o B

Log in to help.cancerimage.eu

()
- Need to update permissions in the Negotiator Ul
BEEUCAIM = [T
CANCER IMAGE EUROPE .
n
Lﬁ Connect to LS AAI Dear manager of the negotiator service.
The service is requesting membership to the BBMRI VO along with the EUCAIM VO. Can
you fix itz
Thanks
Ignacio Blanquer Espert
EUCAIM Su ort Team

Figure 12. EUCAIM Helpdesk. a) Entry page and b) creation of a ticket.

4. Reference Nodes

Data holders that cannot set up a federated node should transfer the data to a reference
node in the infrastructure. Both UPV and Erasmus MC provide reference nodes for the
community, each one with a different protocol and requirements, facilitating the uptake of
data holders in terms of geographical coverage and requirements.

The core services run the services required for the federation. Along with those services, the
UPV and Erasmus MC nodes constitute two complementary examples of the computing and
storage nodes that can be linked to the federation.

4.1. UPV Reference Node
The architecture of the UPV reference node is described in Figure 13. It comprises the
following components:

- User-level components

- A Dataset explorer, which comprises the catalogue and the dashboard for
accessing the data.

- The Case Explorer, which provides visualisation of DICOM images and the
capacity of creating datasets.

- The application registry, based on KubeApps.
- Aclientless remote desktop gateway, based on Apache Guacamole.

" Helpdesk: https://help.cancerimage.eu/#login

19

https://help.cancerimage.eu/#login

- Platform-level components
- A DICOM PACS Based on DCM4CHEE that acts as a DICOM Server.

- The Keycloack AAI, which manages authentication and the KubeAuth AAI
Proxy, which enacts the authorisation pipelines.

- The Dataset Service, which manages the catalogue.
- The Tracer, which registers the accesses into a BlockChain and a database.

- A Policy Manager, based on Kyverno, that stores the policies that describe
permissions and can be associated with users or groups.

- The Jobman service for running jobs on the platform.
- Infrastructure level components

- A Storage resource, based on a CEPH server with high-availability and
replication that manages the storage volumes used by the VMs and the
processing platform.

- Processing Resources, based on Kubernetes which are used to deploy the
interactive and the batch applications.

Dataset o
explorer Case Explorer Appll_catlon femees Brasy
(QuIBIM Registry Cuemel)
Precision) (KubeApps)
DCM AAI :
Storage (Keycloak) pataset ellieg :
M4Ch Servi Tracer Manag. jobman User Apps
(DC € AAl proxy S (kyverno)
e) (KubeAuth)

Storage Processing Resources

Figure 13. Deployment schema of the components in the UPV Reference Node.

The code of the reference node is available in https://github.com/chaimeleon-eu. The
specific deployment of the UPV reference node has been performed following the
Kubernetes manifests in https://qithub.com/EUCAIM/k8s-deploy-node/tree/master.

The deployment of UPV reference node requires a CEPH storage and a Kubernentes
cluster. UPV provides a TOSCA cloud orchestrator to deploy those virtual infrastructures on
top of an on-premise cloud platform (see section 2.4 of this document).

The deployment will use 5 dedicated physical nodes, each one 96 cores (AMD EPYC 9474F
processor), 756 GB of RAM, 3 NVIDIA A30 GPUs with 24GB RAM each and a local SSD
disk with 1 TB. The total figures are: 480 (real, double if hyperthreaded) cores, 3780 GB of
RAM, 15 A30 GPUs and 5 TB of local disk space (permanent storage is on a different server
with 75 TB of storage in NVE Link high-speed disks, connected through a double 25 Gb link
to the switch of the processing services.

20

https://github.com/chaimeleon-eu
https://github.com/EUCAIM/k8s-deploy-node/tree/master

This will enable the platform to deal with a concurrent processing capacity of:

- 40 Interactive desktops with 1.2-4 cores, 16 GB RAM and 5 GB disk each. Interactive
desktops are the main interface of the VRE for the users.

- A queue for small jobs with 8 slots, each one for jobs up to 5.5 cores, 32 GB RAM a
0.25 of an A30 GPU (6 GB) and 40 GB of storage.

- A queue for medium jobs with 4 slots, each one capable of running jobs up to 11
cores, 64 GB RAM, 0.5 A30 GPU (12 GB), and 50 GB of storage.

- A queue for large jobs with 11 slots, each one capable of running jobs up to 12 cores,
70 GB RAM and a full A30 GPU with 24 GB, plus 50 GB of local storage.

- A queue for non-gpu jobs, with 4 slots for jobs requesting up to 12 cores, 70 GB RAM
and 50 GB of storage.

The services running in the UPV reference node are the following:

- Security services

- Authentication: Keycloak is deployed using plain YAMLs from
https://github.com/EUCAIM/k8s-deploy-node/tree/master/keycloak and exposed in
the URL: https://node-eucaim.i3m.upv.es/auth/.

- Authorization: Kube-authorizer is deployed wusing plain YAMLs from
https://gitlab.com/primageproject/kube-authorizer and only accessible internally.

- Security Policy Management System: Kyverno is deployed using the official helm

chart as explained in
https://github.com/EUCAIM/k8s-deploy-node/tree/master/kyverno using the
“baseline” Pod Security Standard Policy and other policies

fromhttps://github.com/EUCAIM/k8s-deploy-node/tree/master/kyverno/policies.
- Authentication proxy: OAuth2-proxy is deployed using the official helm chart as
explained in https://github.com/EUCAIM/k8s-deploy-node/tree/master/oauth2p

Container image and Helm Chart repository:

e Harbor: deployed using the official helm chart as explained in
https://qithub.com/chaimeleon-eu/k8s-deployments/tree/master/harbor and exposed
in https://harbor.node-eucaim.i3m.upv.es

Interact with Kubernetes (deploy resources):

e Kubeapps (for normal users): deployed using plain YAMLs from
https://github.com/EUCAIM/k8s-deploy-node/tree/master/kubeapps and exposed in
https://node-eucaim.i3m.upv.es/apps

e Kubernetes Dashboard (only for administrators): deployed using the Kubernetes
Ansible role. URL: https://node-eucaim.i3m.upv.es/dashboard

Interact with deployed resources:

e Guacamole: deployed using the helm chart as explained in
https://github.com/EUCAIM/k8s-deploy-node/tree/master/guacamole. And exposed
in: https://chaimeleon-eu.i3m.upv.es/guacamole

e Kubernetes Dashboard: Only available for administrators.
Ingestion services:

e We currently have deployed Quibim Precision and DC4CHEE, following the helm
chart as explained in https://gitlab.com/primageproject/k8s_quibimprecision and the

21

https://github.com/EUCAIM/k8s-deploy-node/tree/master/keycloak
https://node-eucaim.i3m.upv.es/auth/
https://gitlab.com/primageproject/kube-authorizer=
https://github.com/EUCAIM/k8s-deploy-node/tree/master/kyverno
https://github.com/EUCAIM/k8s-deploy-node/tree/master/kyverno/policies
https://github.com/EUCAIM/k8s-deploy-node/tree/master/oauth2p
https://github.com/chaimeleon-eu/k8s-deployments/tree/master/harbor
https://harbor.chaimeleon-eu.i3m.upv.es/
https://github.com/EUCAIM/k8s-deploy-node/tree/master/kubeapps
https://chaimeleon-eu.i3m.upv.es/apps/
https://node-eucaim.i3m.upv.es/dashboard
https://github.com/EUCAIM/k8s-deploy-node/tree/master/guacamole
https://chaimeleon-eu.i3m.upv.es/guacamole/
https://gitlab.com/primageproject/k8s_quibimprecision

DCM4CHEE PACS using the plain YAMLs from

https://gitlab.com/primageproject/k8s _quibimprecision/-/tree/master/without chart/pa
cs. However, both services will be replaced by QP-Insights in the short time, as soon

as the integration tests are completed.

Dataset administration and Traceability System:

Dataset service: all the details of deployment and usage in
https://github.com/chaimeleon-eu/dataset-service

REST API exposed in: https://node-eucaim.i3m.upv.es/dataset-service/api
WEB Ul (Dataset explorer) exposed in:
https://node-eucaim.i3m.upv.es/dataset-service

Chaimeleon K8s Operator: deployed using the helm chart as explained in
https://github.com/chaimeleon-eu/k8s-chaimeleon-operator.

Tracer service: all the details of deployment and usage in
https://github.com/chaimeleon-eu/tracer

REST API exposed in: https://node-eucaim.i3m.upv.es/tracer-service/tracer
WEB Ul included in the Dataset Service end-point (Dataset explorer).

4.2.1 Data ingestion

Figure 14 shows the uploading of data and the creation of a dataset in the case of the UPV
reference node as an example.

e p— = @ Outebwcnes Cums w4 v e D Lz = @ D P | Coms

N cnpmatsnn s (b sUSRIMEN G B Y) ® EH O P

a)

Figure 14, adding a study to the reference storage a), and creating a collection from the data
uploaded b).

4.2. Euro-Biolmaging Reference Node

The Euro-Biolmaging Medical Imaging Repository (a reference node in EUCAIM) focussed
on storing data for Data Holders. The underlying platform for storing and managing imaging
data is XNAT. XNAT is an extensible open-source imaging platform that simplifies common
tasks in imaging data management. The Euro-Biolmaging Medical Imaging Repository
service is an XNAT instance operated by Health-RI. Erasmus MC is providing 2nd line

22

https://gitlab.com/primageproject/k8s_quibimprecision/-/tree/master/without_chart/pacs
https://gitlab.com/primageproject/k8s_quibimprecision/-/tree/master/without_chart/pacs
https://github.com/chaimeleon-eu/dataset-service
https://node-eucaim.i3m.upv.es/dataset-service/api
https://node-eucaim.i3m.upv.es/dataset-service
https://github.com/chaimeleon-eu/k8s-chaimeleon-operator
https://github.com/chaimeleon-eu/tracer
https://node-eucaim.i3m.upv.es/tracer-service/tracer
https://docs.google.com/document/d/1E9WqsYJvyB_S1q0Gmrn95vqrweNqBPfPocjnDiCgMeM/edit#fig_data_upload_upv
https://docs.google.com/document/d/1E9WqsYJvyB_S1q0Gmrn95vqrweNqBPfPocjnDiCgMeM/edit#figur_data_upload_upv

support and is responsible for managing the service roadmap. XNAT allows its user to
manage large imaging datasets, adjust users permissions, preview and review data, as well
as run processing pipelines. In EUCAIM the Euro-Biolmaging XNAT will be used to store
imaging data and will be integrated with other core services.

4.2.1. High level Architecture

The high-level architecture of the Euro-Biolmaging EUCAIM reference node is depicted in
Figure 15. The components described are:

e Q API: Query API. Refer to the Federated Core Services deliverable (D4.5) for more
information

e Dashboard: EUCAIM Dashboard. Refer to the Dashboard deliverable (D4.7) for more
information

e Catalogue: Place where to store metadata about the collections contained in the
Repository. Refer to the Federated Core Services deliverable (D4.5) for more
information

e AAI: Authentication & Authorization Infrastructure

e FDP: Fair Data Point (means of exposing the metadata of a repository:
https://www.fairdatapoint.org/). We refer to the Federated Core Services deliverable
(D4.5) for more information.

e Web Ul User interface for data management, application management, data

browsing and inspection, use of a case explorer and data annotation, etc. We refer to

the end-user guide deliverable (D4.13) and the future training materials

A/IO API: Access and Data I/O API, this is a REST API

Annotation and analysis: data resulting from annotation and analysis of raw data.

Data Holder: Center or project that holds data

Ingestion & Curation: Data ingestion from the Data Holder into the Repository

Annotation

Version: 0.4

Dashboard Catalog

[oEnnG o g Central Repository o Analysis
Data holder] ngestion & Curation g (using XNAT)

Figure 15. Deployment schema of the components in the Euro-Biolmaging Reference Node.

4.2.2. Technical implementation

The XNAT server is a standard XNAT installation (currently version 1.7.5.6). From a high
level view, XNAT consists of three big parts: a relational database backend, middleware
components, implemented in Java, and user web interface. First, data types stored by XNAT
are described using XML schema definition (XSD). Based on these definitions, XNAT then
generates corresponding tables in the database as well as necessary Ul components for the

23

https://www.fairdatapoint.org/

interface. Modern versions of XNAT use PostgreSQL database to store and look up the file
locations of the imaging data corresponding to a certain subject, scan session and so on.
The imaging data itself is not stored in this PostgreSQL database. XNAT uses the file
locations in this database to find specific images stored separately on the machine where
XNAT is deployed. Furthermore, XNAT offers a REST API, facilitating easy accessibility and
interoperability. The REST API caters for both data interaction and configuration and
administrative tasks. Since the Euro-Biolmaging XNAT is an unmodified instance, we refer to
the official documentation for a more detailed overview of its functionality and architecture.®

4.2.3. Data ingestion

For ingesting data, multiple options are available, depending on the specific capabilities of
the Data Holder and the data format, the XNAT DICOM Receiver or the A/IO APl can be
used to upload data to the XNAT repository.

- Clinical Trail Processor: https://mircwiki.rsna.org/index.php?title=MIRC_CTP)

- XNATpy: https://xnat.readthedocs.io/)

The Clinical Trail Processor (CTP), is an advanced DICOM processing tool. This is the
preferred tool to upload DICOM data to the Euro-Biolmaging XNAT.

In the Euro-Biolmaging Medical Imaging Repository, a CTP is placed between the XNAT
built-in DICOM receiver and the public internet. Because the communication protocols of
DICOM are not designed for public facing networks, this has to be protected. Two CTP’s can
act as a bridge between a Data Holderand the Euro-Biolmaging XNAT using an encrypted
connection. CTP is able to process DICOM headers and can be used for anonymizing the
data. It is fully compliant with the DICOM standard.

XNATpy is a python client, developed by Erasmus MC, which interacts with XNAT through
the XNAT API. It offers programmatic access as well as Command Line Interface (CLI)
interaction. XNATpy adapts itself to the XNAT instance it communicates with through the
XNAT data model XSD definitions. XNATpy offers query and search functionality. It is
recommended by the international XNAT community as the tool to use for programmatic
access to XNAT.

5. Conclusions

This deliverable describes the backend infrastructure and the deployment of the core
services that manage the federation of EUCAIM. In a nutshell, EUCAIM core services are
based on YAML manifests that are deployed on top of a Kubernetes cluster that runs on a
virtual infrastructure managed by an OpenStack. The deployment of the components
facilitate isolation from the actual data, which is stored on a separate deployment. Most of
the components are released under open source licences and use well known APIs, so
replacement of components is feasible.

This document complements the description of the architecture of the core services in D4.5
and the end-user manual described in D4.13.

24

https://mircwiki.rsna.org/index.php?title=MIRC_CTP
https://xnat.readthedocs.io/en/latest/
https://wiki.xnat.org/documentation/xnat-administration/understanding-the-components-of-xnat

