
 Project title: European Federation for Cancer Images

 Project acronym: EUCAIM

 Grant Agreement: 101100633

 Call identifier: DIGITAL-2022-CLOUD-AI-02

 D4.9 Central Core Infrastructure set-up

 1

 Author(s): Ignacio Blanquer (UPV), Pablo Montoliu (UPV), Marcel Koek
 (Erasmus MC), Esther Bron (Erasmus MC, Health-RI), Pau Lozano
 (UPV), Andrei S. Alic (UPV)

 Reviewers (WP) Carina Soler (HULAFE), Ignacio-Gomez Rico (HULAFE), Celia
 Martin (QUIBIM)

 WP2
 WP3
 WP4 Carina Soler (HULAFE), Ignacio Gómez-Rico (HULAFE)
 WP5
 Date of delivery: 30/06/2024
 Version: V0.1
 Due date: Month 18
 Actual delivery
 date:
 Type: DEM + R
 Dissemination
 level:

 Public

 Table of contents

 1. Introduction .. 5
 2. Backend infrastructure ... 5

 2.1. Principles of the infrastructure ... 5
 2.2. Hardware fabric ... 5
 2.3. Cloud Backend .. 6
 2.4. Kubernetes Backend ... 6

 3. Kubernetes components ... 7
 3.1. Design Principles ... 7
 3.2. Storage Backend ... 7
 3.3. High Availability ... 8
 3.4. Components .. 9

 3.4.1. Dashboard .. 9
 3.4.2. Public Catalogue .. 10
 3.4.3. Federated Search ... 12
 3.4.4. Negotiator ... 14
 3.4.5. Monitoring ... 15

 3.5. External services ... 17
 3.5.1. LS-AAI .. 17
 3.5.2. Helpdesk .. 18

 4. Reference Nodes .. 19
 4.1. UPV Reference Node .. 19

 4.2.1 Data ingestion ... 22

 2

 4.2. Euro-BioImaging Reference Node .. 22
 4.2.1. High level Architecture ... 22
 4.2.2. Technical implementation ... 23
 4.2.3. Data ingestion .. 24

 Abbreviations
 Terms Definitions

 AAI Authentication and Authorisation Infrastructure

 AARC Authentication and Authorisation for Research and Collaboration

 AI4HI AI4HI AI for Health Imaging Network

 API Application Programming Interface

 Auth Authentication

 BBMRI-ERIC European Infrastructure for Biobanking - European Research Infrastructure Consortium

 CEPH
 A free and open-source software-defined storage platform that provides object storage,
 block storage, and file storage

 DBMS Database Management Service

 DCAT-AP Data Catalogue vocabulary Application Profile

 DCM4CHEE A Java-based library and set of tools for working with DICOM files

 DICOM Digital Imaging and Communication In Medicine

 DNS Domain Name System

 EduGain Global interfederation service that interconnects multiple identity federations

 EGI European Grid Infrastructure

 ELK Elasticsearch, Logstash, Kibana

 EOSC European Open Science Cloud

 EU European Union

 EUCAIM European Federation for Cancer Images

 FAIR Findable, Accessible, Interoperable, Reusable

 FDP FAIR Data Point

 GbE Gigabit Ethernet

 GDPR General Data Protection Regulation

 GPU Graphics Processing Unit

 Guacamole A clientless remote desktop gateway

 GUI Graphical User Interface

 IdP Identity Provider

 IM Infrastructure Manager

 K8S Kubernetes

 KubeApps In-cluster web-based application for the management of Kubernetes applications

 KubeAuthoriser A federated cloud architecture for processing of cancer images on a distributed storage

 3

 Kyverno A policy engine designed specifically for Kubernetes

 LS-AAI Life Sciences Authentication and Authorisation Infrastructure

 LTS Long Term Support

 MOLGENIS
 A modular web application for scientific data, initially focused on molecular genetics
 research (molecular genetics information system) but expanded to other disciplines.

 Negotiator BBMRI-ERIC service for structured negotiator for biomedical resources

 NFS Network Filesystem

 OAuth2 Open Authorisation v. 2.0

 OpenID Open standard and decentralised authentication protocol

 PACS PACS Picture Archiving and Communication System

 Postgres Object-oriented relational Database management system

 PV Persistent Volume object

 PVC Persistent Volume Claim

 QUIBIM Spanish company on AI applied to Image Biomarkers

 RIS RIS Radiological Information System

 TB Terabyte

 TOSCA Topology and Orchestration Specification for Cloud Applications

 UPS Uninterrupted Power Service
 UPV Universitat Politècnica de València (Valencia University of Technology)

 VAULT Hasihcorp identity-based secrets and encryption management system

 VM Virtual Machine

 VMI Virtual Machine Image

 VO Virtual Organisation

 WP WP Work Package

 Disclaimer
 The opinions stated in this report reflect the opinions of the authors and not the opinion of the
 European Commission.

 All intellectual property rights are owned by the consortium of EUCAIM under terms stated in their
 Consortium Agreement and are protected by the applicable laws. Reproduction is not authorised
 without prior written agreement. The commercial use of any information contained in this document
 may require a licence from the owner of the information.

 4

 1. Introduction
 EUCAIM leverages from the developments on other Research Infrastructures for health
 data, extending and customising services that are key for metadata cataloguing, federated
 search, access negotiation, data storage and computing-intensive processing.

 Those services have been adapted and customised to deal with the specificities of EUCAIM
 and to enable their integration. These components have been prepared for being deployed
 on a Kubernetes infrastructure that manages the availability, network traffic and workloads
 efficiently. The document describes the backend infrastructure and the deployment manifests
 for each one of the core services of EUCAIM.

 EUCAIM constitutes a federated infrastructure. The Reference (sometimes called central)
 storages are reference implementations of storage and processing nodes that can be
 replicated around the federation. The basic federation of EUCAIM described here involves
 two reference storages and two AI4HI providers.

 EUCAIM also deploys two core service infrastructures, one for production and one for
 development, using the same components and under two different DNS. Both infrastructures
 have the same AAI registrations and use configuration files and environment variables for
 customising each deployment.

 2. Backend infrastructure
 The backend infrastructure comprises the hardware resources and the middleware layers
 used to run the services of EUCAIM. It has been divided into three blocks: Hardware
 resources, cloud management layer and container management layer.

 2.1. Principles of the infrastructure

 The architecture should support the following design principles:
 - High availability. The hardware should be provided by an Uninterrupted Power

 Service (UPS), replicated storage and a reliable control plane.
 - Efficiency. The hardware resources and the middleware software layers should

 provide enough resources and should enable high performance processing through
 GPU accelerators.

 - Security. Exposure of services must be minimised, access to resources should be
 limited, users should be properly authenticated and authorised and all
 communications in external networks should be encrypted.

 - Convenience. The infrastructure should rely on widely used components and
 protocols, reducing the migration burden from the providers.

 2.2. Hardware fabric

 The core services run on hardware resources shared with the reference storage and
 processing environment located at UPV, although the core services environment is isolated
 from the reference storage at the software level. The infrastructure at UPV, at the release of
 this deliverable, comprises 5 nodes Gigabyte R283-ZF0-AAL1 with 2 CPUs AMD EPYC
 9474F 48-Core Processor each, summing up 480 cores, 3,84TB RAM and 15 A30 GPU
 accelerators with 24 GB of RAM each, as well as an additional storage server with 16 TB of
 NVMe link SSD disks connected through 25+25GbE to the nodes.

 5

 In the coming months, it is expected to expand the storage to 250 TB using similar
 technology and reach by Q1 2025 a total of 12 servers (1152 cores), 9TB of RAM and 36
 GPU accelerators.

 2.3. Cloud Backend

 The hardware resources are offered in the format of a cloud on-premise offering,
 implemented through OpenStack Bobcat. OpenStack is the de facto standard in on-premise
 cloud management frameworks, and provides maintenance and frequent updates. The
 deployment exposes four public endpoints:

 - Dashboard (Horizon): https://imaging.i3m.upv.es/horizon/

 - Authentication (Keystone): https://imaging.i3m.upv.es:5000/v3/

 - Virtual Machine Image Catalogue (glance): https://imaging.i3m.upv.es:19292

 - Network manager (neutron); https://imaging.i3m.upv.es:19696

 All public endpoints require authentication and are limited to the administration managers of
 the EUCAIM core services infrastructures. Access to the endpoints is restricted to the
 internal network of the UPV.

 A specific project has been created within the platform to isolate the permissions of the users
 that manage the EUCAIM cores services from the users who manage the platform. The
 types of instances for the core system are:

 - Instance types:
 - Large VM (12 cores, 62,5GB RAM)
 - Small (4 cores, 23,4GB RAM)

 - VMIs:
 - Ubuntu 24.04 LTS (noble)
 - Ubuntu 22.04 LTS (jammy)

 On top of those virtual resources, a Kubernetes infrastructure is deployed, which will be the
 place where the core services are deployed.

 2.4. Kubernetes Backend

 All the core services are embedded into software containers that are run on the platform
 through a Kubernetes container management platform.

 Kubernetes is installed using Infrastructure Manager (https://www.grycap.upv.es/im) through
 the EGI IM Dashboard (https://im.egi.eu/im-dashboard/), a cloud orchestration solution which
 is widely used in e-Infrastructures, such as the EGI Federated cloud
 (https://www.egi.eu/egi-infrastructure/) and the Application Workflow Manager of the EOSC
 Core managed services of the EOSC EU Node.

 The set up includes:

 - One Small VM for the Kubernetes front-end.

 - Three Large VMs for the worker nodes of Kubernetes.

 6

https://imaging.i3m.upv.es/horizon/
https://imaging.i3m.upv.es:5000/v3/
https://imaging.i3m.upv.es:19292/
https://imaging.i3m.upv.es:19696/
https://www.grycap.upv.es/im/index.php
https://im.egi.eu/im-dashboard/
https://www.egi.eu/egi-infrastructure/

 Infrastructure manager facilitates the scalability of the platform by providing a convenient
 interface to expand or reduce the number of nodes. Reducing the nodes triggers the
 reallocation of the containers automatically. Expanding the nodes will open additional space
 for additional (or pending) workloads.

 Along with the Kubernetes system, the following components are installed:

 - A Flannel network plugin.

 - The Kubernetes Dashboard.

 - A Helm service to deploy Helm charts of applications.

 - Let’s encrypt certificate manager.

 - An NFS Persistent Volume provisioner.

 The specification of the Kubernetes installation recipes follow the TOSCA standard
 (Topology and Orchestration Specification for Cloud Applications). The template of the recipe
 is available in https://github.com/grycap/tosca/blob/main/templates/kubernetes.yaml .

 3. Kubernetes components
 3.1. Design Principles

 The core services deployment manifests have been implemented considering the following
 implementation principles:

 - Every component is deployed on a different namespace.
 - Reduced surface exposure by exposing only the essential endpoints.
 - Endpoints accessible through https protocols on standard ports only.
 - Services are instantiated through high-availability deployments.
 - Storage is provided through an NFS Persistent Volume.

 All the Kubernetes manifests are available in a GitHub Repository of the project
 (https://github.com/EUCAIM/k8s-deployments/)

 3.2. Storage Backend

 Containers are ephemeral and the local storage is volatile. Any file stored in the containers
 will disappear if the container is restarted. A persistent storage is attached via NFS
 persistent volumes to each one of the components. In some cases, components require
 more than one volume and they are provided as separate volumes.
 The matching between the Persistent Volume Claim (PVC) and the Persistent Volume (PV)
 is performed through the definition of a specific StorageClass for each type of volume,
 easing traceability. Figure 1 shows a schema of the general deployment of each PV in the
 cluster. The manifests for each one of the PV types are included in the manifests of each
 component.

 7

https://github.com/grycap/tosca/blob/main/templates/kubernetes.yaml
https://github.com/EUCAIM/k8s-deployments/

 Figure 1 . Structure of Storage in the Kubernetes deployments.

 3.3. High Availability

 High availability is implemented through three approaches:
 - Use of scalable deployments with potentially multiple instances. This is implemented

 in the services with higher exposure which could suffer a higher workload.
 - Use of automatic restart policies for the pods, ensuring that services are restarted in

 case of unexpected errors, by using the “Always” Restart Policy of the replica sets.
 - Use of blue-green deployments (see figure 2) to roll-out new versions with the

 capability of immediately rolling back to previous deployments.
 The blue-green deployments are implemented in the following cases:

 - Dashboard, with separate persistent volumes for the web application to deal with
 updates in the application and the container images.

 - Federated Search Explorer, to deal with updates at the container level.
 - Negotiator, to deal with updates at the container level.

 The catalogue uses a conventional deployment as the changes are made at the database
 level and rarely at the container level. In any case, a development deployment has been set
 up to facilitate testing new versions prior to launching them in the production environment.

 Figure 2 . Blue-green deployments. Two identical deployments with an ingress controller
 pointing out to the active one. The inactive deployment is scaled to 0 and is the one where
 changes are applied when rolling out a new application, changing the ingress controller to

 the green service. When the application is completely verified, the blue deployment is scaled
 to 0 and becomes the future testing environment.

 8

 3.4. Components

 This section briefly describes each one of the deployment artefacts for each one of the
 components that define the core services of EUCAIM.
 The namespaces in each component deployed are self-explanatory (dashboard, catalogue,
 explorer, negotiator, monitoring).
 It is important to outline that services are accessible only in the private overlay network of
 the Cilium plugin in Kubernetes. Only the services that require external access are exposed
 through an nginx proxy and using encrypted protocols.
 Detailed descriptions of the components can be found in Deliverable D4.5 First Federated
 Core Services . Instructions for its usage can be found in Deliverable D4.13 End-user guide
 to the system.

 3.4.1. Dashboard

 The Dashboard is the main entry point to the EUCAIM environment. It is described in detail
 in Deliverable D4.7 First EUCAIM Dashboard . The manifests that describe the deployment
 are available in GitHub 1 . The schema of the components is shown in F igure 3 . The
 Dashboard implies four main components:

 - Two PV with the application and the database files.
 - A MongoDB database running in a deployment, persisting the database files through

 a PVC and internally accessible through a service, which is used by the Dashboard
 application.

 - A nodeJS server running in a deployment, mounting the dashboard application
 through a PVC and exposed through the dashb-node-service .

 - An ingress controller that exposes the dashboard service in the root of the
 dashboard.* DNS.

 1 https://github.com/EUCAIM/k8s-deployments/tree/main/dashboard

 9

https://github.com/EUCAIM/k8s-deployments/tree/main/dashboard

 Figure 3 : Schema of Kubernetes manifests for the deployment of the Dashboard.
 The previous components have been listed following the recommended deployment order.
 To customise the deployment, the following changes should be applied:

 - Change the hostname in the root-path-redirect ingress.
 - Change the PV NFS endpoints in the node-vol and dashb-mongo-vol PVs
 - The configuration of the endpoints should be provided in a file named settings.json

 and the configuration of the AAI should be changed in the code (client/main.jsx,
 structure LSConfig). The package should be compiled and uploaded into the
 Dockerfile of the container images

 The provisioning of a certificate for the domain where the service will be exposed is
 automatically created through an annotation in the ingress controller. This annotation triggers
 the creation and fetching of a certificate for the domain through Let’s encrypt service, which
 is stored in a secret Kubernetes object.

 3.4.2. Public Catalogue

 The public catalogue stores the metadata, offering the researchers descriptive information
 about the available datasets. The catalogue consists of the Molgenis 10.1 platform as a
 back-end with a custom Javascript front-end which is based on prior catalogues. The whole
 architecture of the Molgenis platform has been minimised to the components relevant for
 EUCAIM.

 10

 The manifests that are used for the deployment of the catalogue may be also found in
 GitHub 2 . The architecture of the solution is shown in F igure 4 and F igure 5 . The deployment
 consists of four elements:

 1. Molgenis deployment: This deployment is configured through two ConfigMaps that
 define the service parameters and two Persistent Volumes (PV) where the logs from
 the application (audit PV) and the backups and the necessary files for running the
 application backend (app-data PV) are stored.

 2. Frontend deployment: The frontend deployment runs the molgenis-frontend image.
 This frontend is accessible via web at the url
 https://catalogue.eucaim.cancerimage.eu/ thanks to the Ingress attached to it. It also
 has a persistent volume mounted through a Persistent Volume Claim (PVC) mounted
 to the PV where the necessary files for running the Molgenis user interface are
 stored.

 3. Postgres database: A database, where the catalogue metadata is stored. The
 Postgres database information is stored in the postgres-vol2 PV.

 4. Elasticsearch: Molgenis uses Elasticsearch for indexing the data layer. This
 deployment also comes with its own persistent volume, allowing elasticsearch to
 keep the data.

 ConfigMaps
 As can be seen in Figure 5 , the architecture of the federated search contains 5 distinct
 ConfigMaps. Each of these ConfigMaps has been designed with the following purposes:

 - ConfigMap backend: Configures an Nginx server to act as a reverse proxy and
 manage DNS resolutions within the cluster.

 - ConfigMap nginxconf: Contains the main settings for an Nginx server, including
 worker processes and logging configurations.

 - ConfigMap tomcat-webxml: Sets up web application parameters for Tomcat,
 focusing on file upload configurations and application metadata.

 - ConfigMap tomcat-serverxml: Provides detailed server settings for Tomcat,
 focusing on HTTP connector configurations and user authentication.

 - ConfigMap ltsconf: Manages URL rewrites and redirects in Nginx to optimize
 content delivery and application functionality.

 2 https://github.com/EUCAIM/k8s-deployments/tree/main/Molgenis

 11

https://catalogue.eucaim.cancerimage.eu/
https://github.com/EUCAIM/k8s-deployments/tree/main/Molgenis

 Figure 4 . Deployment schema of the postgres and elasticsearch deployments in the
 catalogue.

 Figure 5 . Deployment schema of the Molgenis backend and frontend deployments.
 Each deployment uses a service to make the services accessible and discoverable. Only the
 frontend service is made available to outside of the platform through an ingress controller.
 The catalogue application is available in the private repository
 https://gitlab.com/radiology/infrastructure/projects/catalogue/eucaim-molgenis-app

 3.4.3. Federated Search

 The federated search is responsible for obtaining and displaying the datasets and the
 number of subjects that fulfil a specific filtering criteria defined by the user. The software is
 available at https://github.com/samply/beam .
 The architecture of the federated search is composed of six different elements that allows it
 to manage the connections between the different data holders.

 12

https://gitlab.com/radiology/infrastructure/projects/catalogue/eucaim-molgenis-app
https://github.com/samply/beam

 1. Lens: Lens is responsible for providing the graphical interface to the user, allowing
 them to interact with the explorer in an efficient way. This deployment is linked to an
 ingress that makes it accessible at the urls: https://explorer.eucaim.cancerimage.eu/
 and https://explorer-eucaim.grycap.i3m.upv.es/

 2. Spot: Spot is the backend service of the federated search application and is
 responsible for making the calls to the proxy for retrieving the data that the user
 specified.

 3. Beam-Proxy: The Beam-Proxy is responsible for connecting the application service
 to the broker, thereby allowing the application to access data from other projects.

 4. Broker: The Broker is in charge of linking all the projects together by managing the
 requests from the proxies (each project has its own proxy).

 5. Vault: A Vault meant to store and protect the access to tokens, passwords and
 certificates. Vault services can be accessed through the Vault API and we can also
 use the vault for auditing due to it keeps a log of the access to secrets, allowing
 security administrators to track who accessed which secrets and when.

 6. Oauth 2.0 Proxy: This Oauth2 proxy acts as a reverse proxy and authentication
 layer. It allows us to access the application via LifeScience AAI authentication without
 having to implement a login application.

 Figure 6 shows the deployment at the central service and Figure 7 shows the deployment at
 the data holders, as well as the interaction among the components. As can be seen in
 Figure 7 , each data holder must have a beam proxy service deployed for connecting to the
 beambroker of the central node, and a Focus service that acts as an intermediary with the
 particular data service that each data holder has. To facilitate the understandability of both
 figures, the pod objects associated with the deployments are not included.

 Figure 6 . Deployment schema of the federated search at the core services level.

 13

https://explorer.eucaim.cancerimage.eu/
https://explorer-eucaim.grycap.i3m.upv.es/

 The manifests and some more information about the deployment of this service may be
 found at: https://github.com/EUCAIM/k8s-deployments/tree/main/federated-search/eucaim .

 Figure 7 . Deployment schema of the federated search including the interactions with the
 data holders.

 As in the previous core services, a Kubernetes service is created to provide a persistent
 endpoint for lens, spot, beam-proxy, broker-service and vault. The application does not need
 persistent storage except for the case of the access credentials, which are stored in Vault.

 The authentication and authorisation is provided by the OAuth2 proxy ingress service and an
 OAuth2 configuration in a secret, both available in the GitHub Repository 3 . For the
 deployment, the following attributes should be updated:

 - OAuth2 ingress: the attribute host should include the DNS of the host for
 discriminating Federated Search requests (explorer.eucaim.cancerimage.eu in the
 case of EUCAIM production service.

 - OAuth2 proxy deployment: The following arguments should be checked and updated:
 - --redirect-url= https://explorer.eucaim.cancerimage.eu/oauth2/callback
 - --oidc-issuer-url= https://proxy.aai.lifescience-ri.eu
 - --scope="openid email profile eduperson_entitlement"
 - --whitelist-domain=explorer.eucaim.cancerimage.eu

 - OAuth2 secret: Client ID and Secret access key from the LS-AAI console.

 3.4.4. Negotiator

 The negotiator component deployment manifests are available in GitHub 4 . It comprises three
 main services that implement the UI, the backend and the database. Although the UI is the

 4 https://github.com/EUCAIM/k8s-deployments/tree/main/negotiator_v3

 3 https://github.com/EUCAIM/k8s-deployments/tree/main/federated-search/eucaim

 14

https://github.com/EUCAIM/k8s-deployments/tree/main/federated-search/eucaim
https://explorer.eucaim.cancerimage.eu/oauth2/callback
https://proxy.aai.lifescience-ri.eu/
https://github.com/EUCAIM/k8s-deployments/tree/main/negotiator_v3
https://github.com/EUCAIM/k8s-deployments/tree/main/federated-search/eucaim

 only service that is directly accessible from users, the backend exposes the API to the web
 browser application in the /api path. Therefore, the negotiator application has two ingress
 services that expose the frontend and backend deployments. A third deployment manages a
 postgres database that is accessible only through the internal network. The persistence of
 the applications is fully managed through the database, that includes the UI forms. The
 persistence is provided by a PVC mounting a dedicated NFS PV Volume. Figure 8 describes
 the names and interactions of the components.

 Figure 8 : Schema of Kubernetes manifests for the deployment of the Negotiator.
 The deployment first creates the PV and the PVC, and then instantiate the database, the
 backend and the frontend UI.
 The customisation of the deployment of the negotiator implies the following steps:

 - Update the IP of the NFS service and the location of the NFS folder.
 - Update the LS-AAI details in the SPRING_* in the backend and the Molgenis

 catalogue URL. Especially take into account:
 - The Java Web Token issuer, which is indicated in the environment variable:

 SPRING_SECURITY_OAUTH2_RESOURCESERVER_JWT_ISSUERURI
 should be ended by a backslash (e.g. " https://login.aai.lifescience-ri.eu/oidc/ ”).

 - The resource server audiences for the Java Web token
 (SPRING_SECURITY_OAUTH2_RESOURCESERVER_JWT_AUDIENCES)
 should contain the client ID of the UI rather than the URL (e.g.
 "a15a95d1-b251-4f12-b608-76ec02c68010").

 - Update the LS-AAI configuration in the frontend (AUTH_URL, CLIENT_ID and
 REDIRECT_URI)

 - Update the hostname attributes in the Ingress objects.
 - The SSL certificate is automatically created by Kubernetes if the Let’s encrypt service

 is installed along with the provisioner. First time the service is deployed a secret with
 the certificate is created.

 15

https://login.aai.lifescience-ri.eu/oidc/

 3.4.5. Monitoring

 The monitoring service provides an overview of the status of the different EUCAIM
 components by making requests to the associated web services at certain periods of time. In
 addition to this, the service is also capable of sending notifications to the person in charge of
 a EUCAIM component when one of the predefined rules is fulfilled.
 The service’s architecture is composed of 6 components of the technological stack
 Elasticsearch-Logstash-Kibana (ELK stack), which are deployed in a Kubernetes cluster
 using the operator pattern 5 , that is responsible for defining Kubernetes software extensions
 that use custom resources to manage applications and their components.

 1. Elasticsearch: Search engine that stores the information corresponding to different
 metrics in indexes and allows access to the data in a very fast way and with easy
 scaling. In this case, an index has been defined with the name monitor-alerts , where
 a document is written each time an alert occurs in one of the EUCAIM services.

 2. Kibana: Software that allows the generation of different types of dashboards, making
 it easier to visualise and interpret data of different types and origins.

 3. Heartbeat: Functionality that periodically checks the status of a set of predefined
 services and, based on the response received, is able to determine whether they are
 available or not.

 4. Logstash: It is responsible for collecting the metrics of the Elasticsearch
 monitor-alerts index. Then, it filters the data collected and, depending on the service
 that sends the message, it sends a notification email to the person in charge of that
 service.

 5. Elastic Agent and kube-state-metrics: These two components work together to
 collect Kubernetes cluster state metrics and store them in an Elasticsearch index for
 further analysis.

 For the deployment of these services, different YAML manifests have been used, which can
 be found in the EUCAIM project’s GitHub 6 . Once all the aforementioned components are
 deployed, they will start interacting and the alert and monitoring service will be launched,
 being accessible at the URL https://elastic-eucaim.grycap.i3m.upv.es/ . For more information
 on the interaction between the different components please refer to Figure 9 , which shows
 the interaction at a high level of abstraction, or Figure 10 , that depicts the interaction
 between the components at the Kubernetes object-level.

 6 GitHub repository EUCAIM/monitoring-services: https://github.com/EUCAIM/monitoring-services
 5 Kubernetes operator pattern: https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

 16

https://elastic-eucaim.grycap.i3m.upv.es/
https://github.com/EUCAIM/monitoring-services
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

 Figure 9 . Interaction diagram between monitoring service components.

 Figure 10 . Kubernetes object-level interaction diagram.

 17

 3.5. External services

 Along with the services deployed in the central node, EUCAIM uses external services for
 managing the Authentication and Authorisation and the Helpdesk ticketing.

 3.5.1. LS-AAI

 EUCAIM supports authentication based on OpenID. EUCAIM uses the Life Science
 Authentication and Authorisation Infrastructure (LS-AAI) in all the components. This
 facilitates the administration of the user’s permission (performed through the membership to
 the EUCAIM VO Group. In addition to this, the LS-AAI enables third party applications, such
 as the federated nodes that already use the LS-AAI, to seamlessly integrate to the EUCAIM
 Federation.
 All the application endpoints are registered in the LS-AAI catalogue:

 - Dashboard (dashboard.eucaim.cancerimage.eu)
 - Federated Search (explorer.eucaim.cancerimage.eu)
 - Negotiator UI (negotiator.eucaim.cancerimage.eu)
 - Negotiator backend (negotiator.eucaim.cancerimage.eu/api)
 - Helpdesk (helpdesk.eucaim.cancerimage.eu)
 - Reference Node at UPV (eucaim-node.i3m.upv.es)

 Each service has a client ID and a secret that are used for the authentication at the level of
 the service. The services receive the following entitlements from the LS-AAI service.

 - urn:geant:lifescience-ri.eu:group:lifescience:communities_and_projects:EUCAIM#aai.
 lifescience-ri.eu

 The basic configuration of a service in EUCAIM is shown in F igure 11
 Alternatively, a Keycloak instance could be deployed to manage the authorisation of all the
 services and users.

 Figure 11 : Service configuration of one of the EUCAIM core services. Service description (a)
 and OIDC configuration (b).

 18

http://dashboard.eucaim.cancerimage.eu/
http://explorer.eucaim.cancerimage.eu/
http://negotiator.eucaim.cancerimage.eu/
http://negotiator.eucaim.cancerimage.eu/api
http://helpdesk.eucaim.cancerimage.eu/
http://eucaim-node.i3m.upv.es/

 3.5.2. Helpdesk

 The helpdesk instance is hosted by the Karlsruhe Institute of Technology (KIT) and it has
 been configured to accept LS-AAI accounts. Therefore, it is not deployed along with the rest
 of the core services in the central node, and no additional details are provided in this
 document. Figure 12 shows the entry page 7 of the Helpdesk and the creation of a ticket.

 a) b)

 Figure 12 . EUCAIM Helpdesk. a) Entry page and b) creation of a ticket.

 4. Reference Nodes
 Data holders that cannot set up a federated node should transfer the data to a reference
 node in the infrastructure. Both UPV and Erasmus MC provide reference nodes for the
 community, each one with a different protocol and requirements, facilitating the uptake of
 data holders in terms of geographical coverage and requirements.

 The core services run the services required for the federation. Along with those services, the
 UPV and Erasmus MC nodes constitute two complementary examples of the computing and
 storage nodes that can be linked to the federation.

 4.1. UPV Reference Node

 The architecture of the UPV reference node is described in Figure 13 . It comprises the
 following components:

 - User-level components
 - A Dataset explorer, which comprises the catalogue and the dashboard for

 accessing the data.
 - The Case Explorer, which provides visualisation of DICOM images and the

 capacity of creating datasets.
 - The application registry, based on KubeApps.
 - A clientless remote desktop gateway, based on Apache Guacamole.

 7 Helpdesk: https://help.cancerimage.eu/#login

 19

https://help.cancerimage.eu/#login

 - Platform-level components
 - A DICOM PACS Based on DCM4CHEE that acts as a DICOM Server.
 - The Keycloack AAI, which manages authentication and the KubeAuth AAI

 Proxy, which enacts the authorisation pipelines.
 - The Dataset Service, which manages the catalogue.
 - The Tracer, which registers the accesses into a BlockChain and a database.
 - A Policy Manager, based on Kyverno, that stores the policies that describe

 permissions and can be associated with users or groups.
 - The Jobman service for running jobs on the platform.

 - Infrastructure level components
 - A Storage resource, based on a CEPH server with high-availability and

 replication that manages the storage volumes used by the VMs and the
 processing platform.

 - Processing Resources, based on Kubernetes which are used to deploy the
 interactive and the batch applications.

 Figure 13 . Deployment schema of the components in the UPV Reference Node.
 The code of the reference node is available in https://github.com/chaimeleon-eu . The
 specific deployment of the UPV reference node has been performed following the
 Kubernetes manifests in https://github.com/EUCAIM/k8s-deploy-node/tree/master .
 The deployment of UPV reference node requires a CEPH storage and a Kubernentes
 cluster. UPV provides a TOSCA cloud orchestrator to deploy those virtual infrastructures on
 top of an on-premise cloud platform (see section 2.4 of this document).
 The deployment will use 5 dedicated physical nodes, each one 96 cores (AMD EPYC 9474F
 processor), 756 GB of RAM, 3 NVIDIA A30 GPUs with 24GB RAM each and a local SSD
 disk with 1 TB. The total figures are: 480 (real, double if hyperthreaded) cores, 3780 GB of
 RAM, 15 A30 GPUs and 5 TB of local disk space (permanent storage is on a different server
 with 75 TB of storage in NVE Link high-speed disks, connected through a double 25 Gb link
 to the switch of the processing services.

 20

https://github.com/chaimeleon-eu
https://github.com/EUCAIM/k8s-deploy-node/tree/master

 This will enable the platform to deal with a concurrent processing capacity of:
 - 40 Interactive desktops with 1.2-4 cores, 16 GB RAM and 5 GB disk each. Interactive

 desktops are the main interface of the VRE for the users.
 - A queue for small jobs with 8 slots, each one for jobs up to 5.5 cores, 32 GB RAM a

 0.25 of an A30 GPU (6 GB) and 40 GB of storage.
 - A queue for medium jobs with 4 slots, each one capable of running jobs up to 11

 cores, 64 GB RAM, 0.5 A30 GPU (12 GB), and 50 GB of storage.
 - A queue for large jobs with 11 slots, each one capable of running jobs up to 12 cores,

 70 GB RAM and a full A30 GPU with 24 GB, plus 50 GB of local storage.
 - A queue for non-gpu jobs, with 4 slots for jobs requesting up to 12 cores, 70 GB RAM

 and 50 GB of storage.

 The services running in the UPV reference node are the following:

 - Security services

 - Authentication: Keycloak is deployed using plain YAMLs from
 https://github.com/EUCAIM/k8s-deploy-node/tree/master/keycloak and exposed in
 the URL: https://node-eucaim.i3m.upv.es/auth/ .

 - Authorization: Kube-authorizer is deployed using plain YAMLs from
 https://gitlab.com/primageproject/kube-authorizer and only accessible internally.

 - Security Policy Management System: Kyverno is deployed using the official helm
 chart as explained in
 https://github.com/EUCAIM/k8s-deploy-node/tree/master/kyverno using the
 “baseline” Pod Security Standard Policy and other policies
 from https://github.com/EUCAIM/k8s-deploy-node/tree/master/kyverno/policies .

 - Authentication proxy: OAuth2-proxy is deployed using the official helm chart as
 explained in https://github.com/EUCAIM/k8s-deploy-node/tree/master/oauth2p

 Container image and Helm Chart repository:

 ● Harbor: deployed using the official helm chart as explained in
 https://github.com/chaimeleon-eu/k8s-deployments/tree/master/harbor and exposed
 in https://harbor.node-eucaim.i3m.upv.es

 Interact with Kubernetes (deploy resources):

 ● Kubeapps (for normal users): deployed using plain YAMLs from
 https://github.com/EUCAIM/k8s-deploy-node/tree/master/kubeapps and exposed in
 https://node-eucaim.i3m.upv.es/apps

 ● Kubernetes Dashboard (only for administrators): deployed using the Kubernetes
 Ansible role. URL: https://node-eucaim.i3m.upv.es/dashboard

 Interact with deployed resources:

 ● Guacamole: deployed using the helm chart as explained in
 https://github.com/EUCAIM/k8s-deploy-node/tree/master/guacamole . And exposed
 in: https://chaimeleon-eu.i3m.upv.es/guacamole

 ● Kubernetes Dashboard: Only available for administrators.

 Ingestion services:

 ● We currently have deployed Quibim Precision and DC4CHEE, following the helm
 chart as explained in https://gitlab.com/primageproject/k8s_quibimprecision and the

 21

https://github.com/EUCAIM/k8s-deploy-node/tree/master/keycloak
https://node-eucaim.i3m.upv.es/auth/
https://gitlab.com/primageproject/kube-authorizer=
https://github.com/EUCAIM/k8s-deploy-node/tree/master/kyverno
https://github.com/EUCAIM/k8s-deploy-node/tree/master/kyverno/policies
https://github.com/EUCAIM/k8s-deploy-node/tree/master/oauth2p
https://github.com/chaimeleon-eu/k8s-deployments/tree/master/harbor
https://harbor.chaimeleon-eu.i3m.upv.es/
https://github.com/EUCAIM/k8s-deploy-node/tree/master/kubeapps
https://chaimeleon-eu.i3m.upv.es/apps/
https://node-eucaim.i3m.upv.es/dashboard
https://github.com/EUCAIM/k8s-deploy-node/tree/master/guacamole
https://chaimeleon-eu.i3m.upv.es/guacamole/
https://gitlab.com/primageproject/k8s_quibimprecision

 DCM4CHEE PACS using the plain YAMLs from
 https://gitlab.com/primageproject/k8s_quibimprecision/-/tree/master/without_chart/pa
 cs . However, both services will be replaced by QP-Insights in the short time, as soon
 as the integration tests are completed.

 Dataset administration and Traceability System:

 ● Dataset service: all the details of deployment and usage in
 https://github.com/chaimeleon-eu/dataset-service
 REST API exposed in: https://node-eucaim.i3m.upv.es/dataset-service/api
 WEB UI (Dataset explorer) exposed in:
 https://node-eucaim.i3m.upv.es/dataset-service

 ● Chaimeleon K8s Operator: deployed using the helm chart as explained in
 https://github.com/chaimeleon-eu/k8s-chaimeleon-operator .

 ● Tracer service: all the details of deployment and usage in
 https://github.com/chaimeleon-eu/tracer
 REST API exposed in: https://node-eucaim.i3m.upv.es/tracer-service/tracer
 WEB UI included in the Dataset Service end-point (Dataset explorer).

 4.2.1 Data ingestion

 Figure 14 shows the uploading of data and the creation of a dataset in the case of the UPV
 reference node as an example.

 Figure 14, adding a study to the reference storage a), and creating a collection from the data
 uploaded b).

 4.2. Euro-BioImaging Reference Node

 The Euro-BioImaging Medical Imaging Repository (a reference node in EUCAIM) focussed
 on storing data for Data Holders. The underlying platform for storing and managing imaging
 data is XNAT. XNAT is an extensible open-source imaging platform that simplifies common
 tasks in imaging data management. The Euro-BioImaging Medical Imaging Repository
 service is an XNAT instance operated by Health-RI. Erasmus MC is providing 2nd line

 22

https://gitlab.com/primageproject/k8s_quibimprecision/-/tree/master/without_chart/pacs
https://gitlab.com/primageproject/k8s_quibimprecision/-/tree/master/without_chart/pacs
https://github.com/chaimeleon-eu/dataset-service
https://node-eucaim.i3m.upv.es/dataset-service/api
https://node-eucaim.i3m.upv.es/dataset-service
https://github.com/chaimeleon-eu/k8s-chaimeleon-operator
https://github.com/chaimeleon-eu/tracer
https://node-eucaim.i3m.upv.es/tracer-service/tracer
https://docs.google.com/document/d/1E9WqsYJvyB_S1q0Gmrn95vqrweNqBPfPocjnDiCgMeM/edit#fig_data_upload_upv
https://docs.google.com/document/d/1E9WqsYJvyB_S1q0Gmrn95vqrweNqBPfPocjnDiCgMeM/edit#figur_data_upload_upv

 support and is responsible for managing the service roadmap. XNAT allows its user to
 manage large imaging datasets, adjust users permissions, preview and review data, as well
 as run processing pipelines. In EUCAIM the Euro-BioImaging XNAT will be used to store
 imaging data and will be integrated with other core services.

 4.2.1. High level Architecture

 The high-level architecture of the Euro-BioImaging EUCAIM reference node is depicted in
 Figure 1 5. The components described are:

 ● Q API : Query API. Refer to the Federated Core Services deliverable (D4.5) for more
 information

 ● Dashboard : EUCAIM Dashboard. Refer to the Dashboard deliverable (D4.7) for more
 information

 ● Catalogue : Place where to store metadata about the collections contained in the
 Repository. Refer to the Federated Core Services deliverable (D4.5) for more
 information

 ● AAI : Authentication & Authorization Infrastructure
 ● FDP : Fair Data Point (means of exposing the metadata of a repository:

 https://www.fairdatapoint.org/). We refer to the Federated Core Services deliverable
 (D4.5) for more information.

 ● Web UI : User interface for data management, application management, data
 browsing and inspection, use of a case explorer and data annotation, etc. We refer to
 the end-user guide deliverable (D4.13) and the future training materials

 ● A/IO API : Access and Data I/O API, this is a REST API
 ● Annotation and analysis : data resulting from annotation and analysis of raw data.
 ● Data Holder : Center or project that holds data
 ● Ingestion & Curation : Data ingestion from the Data Holder into the Repository

 Figure 1 5. Deployment schema of the components in the Euro-BioImaging Reference Node.

 4.2.2. Technical implementation

 The XNAT server is a standard XNAT installation (currently version 1.7.5.6). From a high
 level view, XNAT consists of three big parts: a relational database backend, middleware
 components, implemented in Java, and user web interface. First, data types stored by XNAT
 are described using XML schema definition (XSD). Based on these definitions, XNAT then
 generates corresponding tables in the database as well as necessary UI components for the

 23

https://www.fairdatapoint.org/

 interface. Modern versions of XNAT use PostgreSQL database to store and look up the file
 locations of the imaging data corresponding to a certain subject, scan session and so on.
 The imaging data itself is not stored in this PostgreSQL database. XNAT uses the file
 locations in this database to find specific images stored separately on the machine where
 XNAT is deployed. Furthermore, XNAT offers a REST API, facilitating easy accessibility and
 interoperability. The REST API caters for both data interaction and configuration and
 administrative tasks. Since the Euro-BioImaging XNAT is an unmodified instance, we refer to
 the official documentation for a more detailed overview of its functionality and architecture. 8

 4.2.3. Data ingestion

 For ingesting data, multiple options are available, depending on the specific capabilities of
 the Data Holder and the data format, the XNAT DICOM Receiver or the A/IO API can be
 used to upload data to the XNAT repository.

 - Clinical Trail Processor: https://mircwiki.rsna.org/index.php?title=MIRC_CTP)
 - XNATpy: https://xnat.readthedocs.io/)

 The Clinical Trail Processor (CTP), is an advanced DICOM processing tool. This is the
 preferred tool to upload DICOM data to the Euro-BioImaging XNAT.
 In the Euro-BioImaging Medical Imaging Repository, a CTP is placed between the XNAT
 built-in DICOM receiver and the public internet. Because the communication protocols of
 DICOM are not designed for public facing networks, this has to be protected. Two CTP’s can
 act as a bridge between a Data Holderand the Euro-BioImaging XNAT using an encrypted
 connection. CTP is able to process DICOM headers and can be used for anonymizing the
 data. It is fully compliant with the DICOM standard.
 XNATpy is a python client, developed by Erasmus MC, which interacts with XNAT through
 the XNAT API. It offers programmatic access as well as Command Line Interface (CLI)
 interaction. XNATpy adapts itself to the XNAT instance it communicates with through the
 XNAT data model XSD definitions. XNATpy offers query and search functionality. It is
 recommended by the international XNAT community as the tool to use for programmatic
 access to XNAT.

 5. Conclusions
 This deliverable describes the backend infrastructure and the deployment of the core
 services that manage the federation of EUCAIM. In a nutshell, EUCAIM core services are
 based on YAML manifests that are deployed on top of a Kubernetes cluster that runs on a
 virtual infrastructure managed by an OpenStack. The deployment of the components
 facilitate isolation from the actual data, which is stored on a separate deployment. Most of
 the components are released under open source licences and use well known APIs, so
 replacement of components is feasible.
 This document complements the description of the architecture of the core services in D4.5
 and the end-user manual described in D4.13.

 8 https://wiki.xnat.org/documentation/xnat-administration/understanding-the-components-of-xnat

 24

https://mircwiki.rsna.org/index.php?title=MIRC_CTP
https://xnat.readthedocs.io/en/latest/
https://wiki.xnat.org/documentation/xnat-administration/understanding-the-components-of-xnat

